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Résumé. Averaging is a valuable technique to gain understanding in the
long-term evolution of dynamical systems characterized by slow and fast
dynamics. Short period variations of averaged trajectories can be restored
a posteriori by means of a near-identity transformation that is a function
of both the averaged slow and fast variables. Recent contributions in op-
timal control theory prove that averaging can be applied to the dynamical
system resulting from the necessary conditions for optimality. The present
talk extends these results by discussing the evaluation of short-period vari-
ations of the adjoint variables. First, the classical approach is shown to be
inadequate when applied to the assessment of the adjoints of slow variables
because of the peculiar form of their equations of motion. Hence, a consis-
tent transformation is developed, such that variations of the adjoints of fast
and slow variables are evaluated in sequence. A simpli�ed transformation is
�nally obtained when a single fast variable is considered. The methodology
is applied to a time-optimal low-thrust orbital transfer.

Mots-clefs : Averaging, Pontryagin's principle, osculating elements, symplectic transforma-
tion.

When the state of a dynamical system can be decomposed into fast-periodic and slow compo-
nents, averaging the equations of motion over the instantaneous period of the fast variables is a
valuable practice to simplify the dynamics and gain understanding in the long-term evolution
of the �ow [1]. If the estimation of the short-period variations of the trajectory is envisaged,
a near-identity transformation that restores them a posteriori, i.e., as a function of the state
of the averaged system, can be developed. In the general multidimensional case, this transfor-
mation consists of a linear combination of the multivariate Fourier coe�cients of slow states'
dynamical equations.
Recent contributions in optimal control show that the averaging technique can be applied to
the extremal �ow of minimum energy [2] and time [3] problems. These results are obtained by
proving that the adjoints of slow variables, named ps hereafter, have slow dynamics, too. In
addition, the magnitude of the adjoints of fast variables, named pf hereafter, is demonstrated
to be small during the entire trajectory.
Averaging the controlled system facilitates the challenging task of providing a reliable initial
guess to shooting algorithms. The quality of this guess can be theoretically enhanced by
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applying the aforementioned transformation at the beginning of the maneuver. In this way,
although the trajectories of the averaged and original systems are emanated from di�erent
points of the phase space, the early motion of the original system �uctuates about its averaged
counterpart1, so that the control vector is more accurately predicted and, consequently, the
drift between the long-term evolution of the two systems is reduced and the estimation of the
fast dynamics is greatly improved. Unluckily, the reconstruction of ps is unsatisfactory if the
classical algorithm is exploited.
The �rst part of the talk is aimed at providing insight into this result by showing that short-
period variations of pf (although small) are responsible of a non-negligible contribution to the
dynamics of ps and, as such, neglecting them when evaluating the Fourier coe�cients is the
source of the error.
Hence, a new two-step transformation is proposed. First, the variations of pf as a function
of the fast variables are reconstructed by means of the classical algorithm. When the system
has a single fast variable, pf can be straightforwardly evaluated by using an explicit equation
that can be interpreted as a �rst-order matching between the Hamiltonian of the averaged and
original systems. Eventually, the fast oscillations of ps and of the slow states are estimated
by accommodating the information provided by the reconstructed pf .
The developments are illustrated by means of a time-optimal low-thrust orbital transfer in
the planar circular restricted Earth-Moon system. Here, slow variables are the equinoctial
elements [4] de�ning the shape and orientation of the orbit, namely the semilatus rectum and
eccentricity vector, whereas the mean longitude of the satellite and of the Moon are the two
fast variables. Figure 1 depicts the evolution of the adjoint of the semilatus rectum during
the �rst orbital period of the Moon. Dashed and dash-dotted lines are the trajectories of the
averaged and original systems emanated from the same initial state, respectively. A monotonic
di�erence exists between these two curves. When the classical transformation is used, the
reconstructed ps (dotted curve) does not accurately reproduce the motion emanated from the
transformed initial conditions (solid curve). On the contrary, a remarkable improvement is
obtained when the proposed methodology is exploited, as revealed by the enhanced matching
between the solid and dotted curves.
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1This statement is clari�ed by comparing the trajectories emanated from unchanged and transformed initial
conditions in Figure 1 (solid and dash-dotted lines, respectively).
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(a) Classical transformation

t=TMoon [-]
0 0.25 0.5 0.75 1

A
d
jo

in
t

se
m

il
a
tu

s
re

ct
u
m

[-
]

0.93

0.97

1.01

(b) Proposed transformation

Figure 1: Trajectory of the normalized adjoint of the orbital semilatus rectum. Table 1 lists
the numerical values used to generate this trajectory.

Table 1: Numerical values used to generate Figure 1.

Constants

Earth's gravitational parameter 3.986 · 105 km3 s−2

Moon's gravitational parameter 4.905 · 103 km3 s−2

Moon's orbital radius, rMoon 384.4 · 103 km
Thrust to mass ratio 10−2N / 1500 kg

Initial Averaged conditions State Adjoint

Orbital semilatus rectum to rMoon ratio 0.1122 0.989
Eccentricity vector, x component 0.7 0.148
Eccentricity vector, y component 0 0
Mean longitude 344 deg 0
Moon's mean longitude 180 deg 0


