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Résumé. Routing games find many applications in various fields such as
transportation, telecommunications or energy. The set of Nash Equilibria
in this class of games is in general hard to compute. Here, we focus on
the particular case of a parallel network and we address the computational
issue of equilibria by providing two algorithms: the cycling best response
dynamics and a projected gradient descent method. Under some mono-
tonicity assumptions, we prove the convergence of those methods and we
provide an upper bound on their convergence rate. Our convergence re-
sults state that, using one of these algorithms, the unique equilibrium of
the game can be computed at an arbitrary precision in polynomial time. We
give a practical application in the energy sector, where this framework and
the associated results can be used to optimize the electricity consumption
of flexible users.

Mots-clefs : Congestion Game, Best Response, Nash Equilibrium, Demand Response.

We focus on a particular class of N -person games, splittable routing congestion games on a
parallel network. We expose the results given in our recent paper [2] in a more general setting.
A routing congestion game on a parallel network (see [4]) is defined as a set of players N =
{1, . . . , N}, a set of edges T = {1, . . . , T}, a tuple of strictly increasing, convex and
differentiable cost functions ct : R→ R for t ∈ T and, for each player i, a feasibility (strategies)
set Xi that we assumed to be convex and compact. Given a profile (x1, . . . ,xN ), the cost
of each player i is given by:

bi(xi,x−i)
def
=
∑
t∈T

xi,tct (xt) , (1)

where xt =
∑

i∈N xi,t is the aggregated load on edge t.
The basic assumptions above are sufficient to ensure the existence of a Nash Equilibrium.
However, computing the Nash Equilibria of aN -person game is a hard problem: unlike classical
congestion games, the existence of a potential function [3] for a generic instance of atomic
splittable congestion game is unknown. Here, we provide some conditions under which two
simple algorithms — the cycling best response and a simultaneous projected gradient descent
— compute a Nash Equilibrium to an arbitrary precision in polynomial time.

Two Algorithms and their Convergence to the Nash Equilibrium. One of the most
natural way to compute an equilibrium is to compute alternating minimization of bi for each
player i . For a given profile x = (xi,x−i), we denote by BRi the Best Response function of
player i: BRi : si 7→ argminxi∈Xi

∑
t xi,tct(si,t + xi,t) , which depends only of the sum of the

load of others players si
def
=
∑

j 6=i xj . This leads to the following algorithm:
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Algorithm 1 Cycling Best Response Dynamics (CBRD)
Require: x(0), kmax, εstop
1: k ← 0, ε(0) ← εstop
2: while ε(k) ≥ εstop & k ≤ kmax do
3: for i = 1 to N do
4: s

(k)
i =

∑
j<i x

(k+1)
j +

∑
j>i x

(k)
j

5: x
(k+1)
i ← BRi(s

(k)
i )

6: end for
7: ε(k) =

∥∥x(k+1) − x(k)
∥∥

8: k ← k + 1
9: end while

In this algorithm, coordinates are updated in a round-robin fashion as in the Gauss-Seidel
method. Another approach to compute an equilibrium is to perform a projected gradient
descent, considering the gradient of each objective function bi, which gives the below algorithm:

Algorithm 2 Simultaneous Improving Response Dynamics (SIRD)
Require: x(0), kmax, εstop, γ
1: k ← 0, ε(0) ← εstop
2: while ε(k) ≥ εstop & k ≤ kmax do
3: for n = 1 to N do
4: x

(k+1)
n ← ΠXn

(
x
(k)
n − γ∇nbn(x

(k)
n ,x

(k)
−n)
)

5: end for
6: ε(k) =

∥∥x(k+1) − x(k)
∥∥

7: k ← k + 1
8: end while

In general, those two algorithms may not converge. To prove the convergence in our case, we
introduce the notion of strong stability defined below.

Definition 1 Stable Game.
A minimization game G = (N ,X , (bi)i) is A-strongly stable, with a constant A > 0, iff:

∀x,x′ ∈ X , (x′ − x)T.
(
F (x′)− F (x)

)
≥ A

∥∥x− x′
∥∥2 , (2)

where F = (∇xibi)i∈N . If A ≥ 0, we say that G is stable.

Stability is sufficient to ensure the uniqueness of Nash Equilibrium in the game G [5]. It is
also a sufficient condition to ensure the convergence of Algorithm 2, as stated below:

Theorem 1 Denote by Ln a Lipschitz constant of ∇nbn and L def
= maxn Ln. If the game is

A-strongly stable, SIRD converges with step γ ≤ γ∗
def
= A/(NL2). Moreover, for γ = γ∗, we

have: ∥∥∥xNE − x(k)
∥∥∥
2
≤ ηk

∥∥∥xNE − x(0)
∥∥∥
2
,

where η = 1− A2

NL2 .
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It remains an open question to know if strong stability is also sufficient to ensure the conver-
gence of the Best Response iterates (Algorithm 1). However, one particular case for which
we have a convergence result is when costs functions are affine: ct = x 7→ αt + βtx with
αt ≥ 0, βt > 0. In this case, the game is A-strongly stable with A def

= 2 mint βt, and we have:

Theorem 2 Assume that, for each t, there exists αt ≥ 0, βt > 0 such that ct : x 7→ αt + βtx.
Then the sequence of iterates of Algorithm CBRD

(
x(k)

)
k≥0 converges to the unique NE xNE

of G. Moreover, the convergence rate satisfies:∥∥∥xNE − x(k)
∥∥∥
2
≤ C
√
LN√
A
× 1√

k
,

where C depends on x(0) and the billing functions, L = 2 maxt βt and A = 2 mint βt.

The proof relies on the fact that, in this case, the game has the potential property, and the
Best Response algorithm is equivalent to an alternating block-coordinate minimization [1] on
the potential function.

Application to Energy Management with Demand Response. We consider a set of
electricity consumers N who are linked to a local aggregator. The aggregator wants to mini-
mize the costs induced by the consumption profile on the set of time periods T = {1, . . . , T}
and, for that, he sends to each consumer the tuple of per-unit energy price functions (ct(.))t.
Each consumer i has some flexible electrical appliances (e.g. electric vehicle) and has a total
flexible energy need Ei to be satisfied over T , which gives the strategy set (feasible profiles):

Xi
def
= {xi ∈ RT ;

∑
t

xi,t = Ei and ∀t, xi,t ≤ xi,t ≤ xi,t} , (3)

where xi,t, xi,t are upper and lower bounds on the power i can asks on time period t. The total
cost (energy bill) for consumer i is bi(xi,x−i) =

∑
t xi,tct(xt). With the specific strategies

set given by (3) and affine price functions (ct), each iteration of Algorithm 1 or Algorithm 2
can be computed in O(T ). Therefore, those algorithms can be efficiently used to compute the
equilibrium consumption profile in a decentralized fashion and to coordinate consumers.
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