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About prior saturation points for affine control systems1
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Résumé. We consider minimal time control problems governed by an affine
system w.r.t. the control. Our aim is to study properties of the optimal
synthesis in presence of a singular locus that involves a saturation point for
the singular control. We show that the optimal synthesis exhibits a prior
saturation point at the intersection of the singular arc and a switching curve,
and we also discuss qualitative properties of this curve. We highlight this
phenomenon on several models arising in nuclear magnetic resonance and
in bioprocesses.
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Minimal time control problems for affine systems with one input such as:

ẋ = f(x) + ug(x), x ∈ Rn, |u| ≤ 1, (1)

have been investigated a lot in the literature, see e.g [2, 8, 12], [5] for n = 2, and references
herein. One often encounters singular trajectories which appear when the switching function
of the system is vanishing on a time interval I := [t1, t2]. In order to find an issue to a
minimal time control problem governed by (1), one usually requires that the singular control
us is admissible and non saturating, which means that

|us| < 1, (2)

over I. This allows the trajectory to stay on the singular arc. However, one cannot in general
show that this assumption holds. In fact, the singular control can be expressed as a function
of the state x and adjoint state λ by

us(t) := −
〈λ(t), [f, [f, g]](x(t))〉
〈λ(t), [g, [f, g]](x(t))〉

, t ∈ I, (3)

and this expression does not always guarantee that (2) is satisfied. One can argue that it is
enough to consider a larger admissible upper bound for the controls, but this seems rather
artificial, and not necessarily feasible from a practical point of view (see for instance [10] where
this situation is encountered). Our aim is to study properties of minimal time control problems
in the plane where the singular control satisfies (2) only on a sub-domain of the state space
(the part of the singular arc where (2) does not hold is usually called barrier [5, 8]). This
may happen in many engineering problems in particular when the singular control can take

1This communication is based on the papers [1, 4] and on a work in progress by the authors.
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arbitrary large values in the state space (see e.g. [1, 6, 10]). When us(t) > 1 for some instant
t ∈ I, the system exhibits a saturation phenomenon. We then say that x∗ is a saturation
point if x∗ is a point of the singular arc such that us(t∗) = 1 where t∗ ∈ (t1, t2) and such that
|us(t)| > 1, resp. |us(t)| < 1, for t ∈ (t∗, t2], resp. for t ∈ [t1, t

∗). Next, we suppose that such
point exists2 and that the singular arc is a turnpike (i.e. it is locally optimal, see [5]).

Thanks to Pontryagin’s Principle [9], we show that singular optimal trajectories necessarily
leave the singular arc at a frame point x̂ called prior saturation point before reaching x∗ (see
[5] for a description of frame points). As a consequence, a singular extremal trajectory ceases
to be optimal before reaching the saturation point (note that singular extremal trajectories
are admissible until x∗). This rather non-intuitive phenomenon is also studied in [11] where
local results are given.

Next, we analyze the behavior of optimal trajectories at the point x̂. At this point, we show
that singular trajectories necessarily switch to the maximal value for the control. Since the
singular arc is of turnpike type, there must exist a switching curve C which emanates from the
prior saturation point x̂. The behavior of optimal trajectories at this point is interesting for the
optimal synthesis (see [1]). Next, we discuss about the tangency of the dynamics with u = 1
at the prior saturation point x̂ to the switching curve at this point. Such property involves
the behavior of the input-output mapping on a singular arc in the plane. It is interesting for
depicting optimal trajectories and it asserts that singular trajectories leave the singular locus
tangentially to C at x̂.

Finally, we provide two examples where such phenomenon appears. The first one describes
a fed-batch bioreactor with one species, one substrate, and inhibition on the substrate (see
[1]). Such process is widely used in waste water treatment industries, and the mathematical
formulation was given in [7]. We show that if the volume of water to be treated is above a
given threshold, then the saturation phenomenon appears implying the existence of a prior-
saturation point. A complete optimal synthesis can be then given in this case (see [1]). We
also depict an example of the prior saturation phenomenon for the minimal time saturation
problem in medical imaging (see [3, 4]). The goal of the contrast imaging problem is to bring
the magnetization vector towards the center of the Bloch ball in minimum time. This problem
is related to the contrast imaging problem in nuclear magnetic resonance (see [3, 4]). These
examples highlight the notion of bridge which plays an important role in these studies.
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Figure 1: Schematic representation of the optimal synthesis when the initial point of the dy-
namics is the north pole. Regular curves are plotted in blue (dark) and red (dark gray) for
control fields equal to +1 and −1, respectively. The optimal singular trajectories are displayed
in green (light gray). The black line is the switching curve, while the dashed one is the non-
admissible part of the horizontal singular line. The point B is a saturation point and the point
D is prior-saturation point.
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