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Résumé. We study deep signal representations that are invariant to groups
of transformations and stable to the action of diffeomorphisms without
losing signal information. This is achieved by generalizing the multilayer
kernel construction introduced in the context of convolutional kernel net-
works and by studying the geometry of the corresponding reproducing ker-
nel Hilbert space. We show that the signal representation is stable, and that
models from this functional space, such as a large class of convolutional neu-
ral networks with homogeneous activation functions, may enjoy the same
stability. In particular, we study the norm of such models, which acts as a
measure of complexity, controlling both stability and generalization.

This work was published at the NIPS 2017 conference [3]|, and a longer
version is available on arxiv [2].

Mots-clefs : machine learning, kernel methods, convolutional neural networks, signal pro-
cessing, learning theory.

The results achieved by deep neural networks for prediction tasks have been impressive in
domains where data is structured and available in large amounts. In particular, convolutional
neural networks (CNNs) [5] have shown to model well the local appearance of natural images
at multiple scales, while also representing images with some invariance through pooling op-
erations. Yet, the exact nature of this invariance and the characteristics of functional spaces
where convolutional neural networks live are poorly understood; overall, these models are
sometimes seen as clever engineering black boxes that have been designed with a lot of insight
collected since they were introduced.

Invariance and stability to deformations. Understanding the geometry of these func-
tional spaces is nevertheless a fundamental question. In addition to potentially bringing new
intuition about the success of deep networks, it may for instance help solving the issue of reg-
ularization, by providing ways to control the variations of prediction functions in a principled
manner. Small deformations of natural signals often preserve their main characteristics, such
as the class label in a classification task (e.g., the same digit with different handwritings may
correspond to the same images up to small deformations), and provide a much richer class
of transformations than translations. Representations that are stable to small deformations
allow more robust models that may exploit these invariances, which may lead to improved
sample complexity.

The scattering transform [4, 8] is a recent attempt to characterize convolutional multilayer
architectures based on wavelets. The theory provides an elegant characterization of invariance



Journées SMAI MODE 2018

zg = Ag My Pragq : Q — Hy 2 (w) = A My Py (w) € Hy,

linear pooling

My Pewp: Q@ — Hp My, Py (v) = op(Prag-1(v)) € Hy

kernel mapping

Pyxp-1(v) € Pr (patch extraction)

Ty, 1(11) € Hi T Q= Hi

Figure 1: Construction of the k-th signal representation from the k—1-th one. Note that
while Q is depicted as a box in R? here, our construction is supported on = R%,

and stability properties of signals represented via the scattering operator, through a notion of
Lipschitz stability to the action of diffeomorphisms, which can be formalized as follows: given
a signal € L2(©2,RP) on the continuous domain = R, a representation ®(z) is stable to
the action of diffeomorphisms if

|®(Lrz) — @(2)[| < (C1lIVTloo + CallTlloo) |, (1)

where 7 : Q — Q is a Cl-diffeomorphism, L,z(u) := x(u — 7(u)) is the action operator
of the diffeomorphism, and Cy, C5 are constants which control deformation stability and
translation invariance, respectively. Nevertheless, the scattering networks of [4, 8] do not
involve “learning” in the classical sense since the filters of the networks are pre-defined, and
the resulting architecture differs significantly from the most used ones.

Multilayer convolutional kernel representations. In this work, we study such theo-
retical properties for more standard convolutional architectures from the point of view of
positive definite kernels [9]. Specifically, we consider a functional space derived from a ker-
nel for multi-dimensional signals, which admits a multilayer and convolutional structure that
generalizes the construction of convolutional kernel networks (CKNs) [6, 7]. Specifically, the
multilayer kernel representation is obtained through a series of intermediate “feature maps”
x, € L*(Q,Hy,) constructed by successive application of operators, namely patch extraction
(Py), kernel mapping (My) and (Gaussian) pooling (Ay) operators, as shown in Figure 1. The
final representation is then given by

®(z) == AyM,PyAy 1My 1Py q - AAM{Piz € L*(Q,H,). (2)

We study the signal preservation properties of such representations, showing that each layer
can be sampled at intervals smaller than the patch size with no loss of information.

The main motivation for introducing a kernel framework is to study separately data repre-
sentation and predictive models. In particular, by defining a kernel on signals of the form
K(z,z") := (®(x), ®(2’)), functions f in the corresponding RKHS H satisty | f(z) — f(2')] <
|| fll#, | ®(z) — ®(2’)||. On the one hand, we study the invariance and stability properties of
the kernel representation ®(x), obtaining similar guarantees as the scattering transform [8|.
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Figure 2: Comparison of one-dimensional functions obtained with relu and smoothed relu
(sReLU) activations. (Left) non-homogeneous setting of [10]. (Right) our homogeneous set-
ting, for different values of the parameter w. Note that for w > 0.5, sReLU and ReLU
are indistinguishable.

On the other hand, we show that these stability results can be translated to predictive models
by controlling their norm in the functional space, or simply the norm of the last layer in the
case of CKNs [6]. In particular, the RKHS norm controls both stability and generalization,
so that stability may lead to improved sample complexity.

Stability of the kernel representation ®(x). We show that the representation defined
in (2) satisfies the following stability relation. If | V7||s < 1/2,

I9(2r2) ~ 2@l < (€3 (14 ) 197 + 27l ) o] )

n

where o, is the scale of the last pooling operator (which typically grows exponentially with n),
and C] grows with the relative patch sizes at layer k compared to the current resolution given
by the scale oi 1 of the previous pooling operator, which justifies the frequent use of small
patches (e.g., 3x3) in many common CNN architectures for computer vision. When the kernel
is appropriately designed, we also show how to obtain signal representations that are invariant
to the action of any locally compact group of transformations [2].

Model complexity of CINNs. When the kernel mapping operators My, are constructed
using a specific type of kernels (namely, homogeneous dot-product kernels, see [2, 6]), we show
that the space Hi contains generic CNNs with certain types of activation functions, such as a
homogeneous version of the smooth RelLU, shown in Figure 2. For such models, we show that
the RKHS norm can be bounded in terms of the spectral norms of the convolutional operations,
quantities which have recently been shown to be important in understanding generalization
properties of neural networks (e.g., [1]).

In addition to controlling stability, the RKHS norm is known to control generalization be-
havior (see, e.g., the notion of margin bounds for SVMs [9]). This implies, for instance,
that generalization is harder if the task requires classifying two slightly deformed images with
different labels, since this requires a function with large RKHS norm according to our sta-
bility analysis. In contrast, if a stable function (i.e., with small RKHS norm) is sufficient
to do well on a training set, learning becomes “easier” and few samples may be enough for
good generalization.
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