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Résumé. Stochastic optimization algorithms with variance reduction have
proven successful for minimizing large finite sums of functions. Unfortu-
nately, these techniques are unable to deal with stochastic perturbations of
input data, induced for example by data augmentation. In such cases, the
objective is no longer a finite sum, and the main candidate for optimization
is the stochastic gradient descent method (SGD). We introduce a variance
reduction approach for these settings when the objective is composite and
strongly convex. The convergence rate outperforms SGD with a typically
much smaller constant factor, which depends on the variance of gradient
estimates only due to perturbations on a single example.
This work was published at the NIPS 2017 conference [1].
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Many supervised machine learning problems can be cast as the minimization of an expected
loss over a data distribution with respect to a vector x in Rp of model parameters. When an
infinite amount of data is available, stochastic optimization methods such as SGD or stochastic
mirror descent algorithms, or their variants, are typically used (see [9]). Nevertheless, when the
dataset is finite, incremental methods based on variance reduction techniques (e.g., [4, 10, 11])
have proven to be significantly faster at solving the finite-sum problem

min
x∈Rp

{
F (x) := f(x) + h(x) =

1

n

n∑
i=1

fi(x) + h(x)
}
, (1)

where the functions fi are smooth and convex, and h is a simple convex penalty that need not
be differentiable such as the `1 norm. A classical setting is fi(x) = `(yi, x

>ξi) + (µ/2)‖x‖2,
where (ξi, yi) is an example-label pair, ` is a convex loss function, and µ is a regularization
parameter. We consider the smooth case here (h = 0), and point the interested reader to the
full paper [1] for extensions to the non-smooth (composite) case.

A hybrid stochastic/finite-sum setting. In this work, we are interested in a variant of (1)
where random perturbations of data are introduced, which is a common scenario in machine
learning. Then, the functions fi involve an expectation over a random perturbation ρ, leading
to the problem

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

fi(x)
}
. with fi(x) = Eρ[f̃i(x, ρ)]. (2)
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Unfortunately, variance reduction methods are not compatible with the setting (2), since
evaluating a single gradient ∇fi(x) requires computing a full expectation. Yet, dealing with
random perturbations is of utmost interest; for instance, this is a key to achieve stable fea-
ture selection [8], improving the generalization error both in theory [12] and in practice [5],
obtaining stable and robust predictors [13], or using complex a priori knowledge about data
to generate virtually larger datasets [5].

Going faster than SGD: the Stochastic MISO algorithm. Despite its importance,
the optimization problem (2) has been littled studied and to the best of our knowledge,
no dedicated optimization method that is able to exploit the problem structure has been
developed so far. A natural way to optimize this objective is indeed SGD, but ignoring the
finite-sum structure leads to gradient estimates with high variance and slow convergence. The
key quantity to characterize the gains we can hope to achieve relative to SGD is

σ2p :=
1

n

n∑
i=1

σ2i , with σ2i := Eρ
[
‖∇f̃i(x∗, ρ)−∇fi(x∗)‖2

]
,

where x∗ is the (unique) minimizer of f . The quantity σ2p represents the part of the variance of
the gradients at the optimum that is due to the perturbations ρ. In contrast, the convergence
behavior of SGD is controlled by the total variance, which also includes the randomness in
the choice of the index i, and is given by

σ2tot = Ei,ρ[‖∇f̃i(x∗, ρ)‖2] = σ2p + Ei[‖∇fi(x∗)‖2] (note that ∇f(x∗) = 0).

The goal of this work is to exploit the potential imbalance σ2p � σ2tot, occurring when perturba-
tions on input data are small compared to the sampling noise. The assumption is reasonable:
given a data point, selecting a different one should lead to larger variation than applying a
simple perturbation.
We introduce an algorithm for strongly convex objectives, called stochastic MISO (S-MISO),
which exploits the underlying finite sum using variance reduction and achieves faster conver-
gence rate than SGD by reducing the dependence on gradient variance from σ2tot to σ2p. Our
method is based on the MISO/Finito algorithm [4, 6], which incrementally updates quadratic
lower bounds on each fi (obtained from strong convexity) and minimizes the obtained mi-
norizing surrogate on f . S-MISO follows a similar approach, but considers instead approx-
imate lower bounds to each fi, constructed using stochastic gradient estimates of the form
∇f̃it(xt−1, ρt), where xt−1 is the current iterate and it, ρt denote a randomly sampled index
and perturbation. Because of the stochastic nature of the setting, an appropriate decay of
step-sizes is needed in order to obtain convergence.
The iteration complexity of our method is shown in Table 1. The gain over SGD is of order
σ2tot/σ

2
p, which is also observed in our experiments. We also compare against N-SAGA [3]; its

convergence rate is similar to ours but suffers from a non-zero asymptotic error.

Practical gains and results. In Table 2, we show estimates of the gains σ2tot/σ
2
p of our

algorithm compared to SGD in practical scenarios with perturbations, such as Dropout (which
sets feature vector coordinates to zero with probability δ) or image data augmentation with a
pre-trained or unsupervised deep convolutional network. Both settings are important in order
to improve test error in typical machine learning tasks, such as text document classification
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Table 1: Iteration complexity of different methods for solving the objective (2) in terms of
number of iterations required to find x such that E[f(x) − f(x∗)] ≤ ε. Note that we always
have the perturbation noise variance σ2p smaller than the total variance σ2tot and thus S-MISO
improves on SGD both in the first term (linear convergence to a smaller ε̄) and in the second
(smaller constant in the asymptotic rate).

Method Asymptotic error Iteration complexity

SGD 0 O

(
L

µ
log

1

ε̄
+

σ2tot
µε

)
with ε̄ = O

(
σ2tot
µ

)
N-SAGA [3] ε0 = O

(
σ2p
µ

)
O

((
n+

L

µ

)
log

1

ε

)
with ε > ε0

S-MISO 0 O

((
n+

L

µ

)
log

1

ε̄
+

σ2p
µε

)
with ε̄ = O

(
σ2p
µ

)

Table 2: Estimated ratio σ2tot/σ
2
p, which corresponds to the expected acceleration of S-MISO

over SGD. ResNet-50 denotes a 50 layer network [2] pre-trained on the ImageNet dataset.

Perturbation Application case Estimated ratio σ2tot/σ
2
p

Direct
perturbation of
features

Additive Gaussian noise N (0, α2I) ≈ 1 + 1/α2

Dropout with probability δ ≈ 1 + 1/δ
Feature rescaling by s in U(1− w, 1 + w) ≈ 1 + 3/w2

Random image
transformations

ResNet-50 [2], color perturbation 21.9
ResNet-50 [2], rescaling + crop 13.6
Unsupervised CKN [7], rescaling + crop 9.6
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Figure 1: Impact of conditioning for data augmentation on the STL-10 dataset (controlled
by µ, where µ=10−4 gives the best accuracy). Values of the loss are shown on a logarithmic
scale (1 unit = factor 10). η is a multiplier on the initial step-size.

and image classification. Figure 1 compares convergence results of S-MISO with SGD and
N-SAGA, for different values of µ, allowing us to study the behavior of the algorithms for
different condition numbers. The low variance induced by data transformations allows S-
MISO to reach suboptimality that is orders of magnitude smaller than SGD after the same
number of epochs.
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