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Abstract. Motivated by Nesterov’s dual averaging method for solving
(stochastic) convex programs and monotone variational inequalities, we
propose a primal-dual algorithm for finding zeros of random, non-monotone
operators. Given the close connection between the zero set of a maximal
monotone operator and the set of solutions of a (Minty-type) variational
inequality, we focus on a class of non-monotone operators for which the
associated Minty variational inequality admits a solution. This property,
which we call variational coherence, is wide enough to properly include
all maximal monotone, pseudomonotone (“+” or “∗”), and other relevant
classes of operators. Under mild assumptions for the randomness of the
problem at hand (bounded second moments), we show that the algorithm
converges to a zero point with probability 1, and we estimate its rate of
convergence.
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Let X be a convex and compact of some (possibly infinite-dimensional) Hilbert space H, and
let A : X → P(H) be an H-valued mapping which is upper-hemicontinuous in the strong-weak
sense.1 Our goal in this paper is to solve the zero-point problem:

Find x∗ ∈ X such that 0 ∈ A(x∗). (Z)

In the applications we have in mind (dictionary learning, generative adversarial networks,
learning in games, etc.), A is typically derived from a random operator of the general form

A : X × Ω→ P(H), (1)

where (Ω,F ,P) is a complete probability space and

A(x) = E[A(x;ω)] for all x ∈ X , (2)

with integrals and expectations defined in the set-valued sense of Aumann [1]. In this way,
(Z) becomes a stochastic problem, for which we make the following standard assumptions:

(A1) There is a mechanism (a stochastic oracle) which, for a given input point (x;ω) ∈ X ×Ω,
returns a vector v(x;ω) ∈ A(x;ω) such that E[v(x;ω)] ∈ A(x).

1That is, if xn ∈ X converges strongly to x and vn ∈ A(xn) converges weakly to v, then v ∈ A(x), or,
equivalently, the graph of A is sequentially closed in the Hstrong ×Hweak topology.
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(A2) The oracle is bounded in L2, i.e., E[‖v(x;ω)‖2] ≤ σ2 for some σ ≥ 0 and all x ∈ X .

The above problem plays a key role in optimization theory and its applications. A fundamental
example is that of minimizing a function f : X → R, i.e.

minimize f(x),

subject to x ∈ X .
(Opt)

When f is convex, the Fenchel-Moreau subdifferential ∂f of f is maximal monotone [2], so
minimizing f is equivalent to finding a zero of ∂f .
Another key example is that of solving variational inequalities [5]. More concretely, a Minty-
type variational inequality can be formulated as

Find x∗ ∈ X such that 〈A(x), x− x∗〉 ≥ 0 for all x ∈ X , (MVI)

and, when A is maximal monotone, it is well-known that x∗ is a solution of (MVI) if and only
if it is a solution of (Z).
The above links have triggered a vast literature for finding zeros of maximal monotone op-
erators. The most widely studied algorithm for this task is the seminal forward-backward
algorithm (we refer the reader to [2, 3] and [4] for the deterministic and stochastic case re-
spectively). However, monotonicity (and, to a lesser degree, maximality) is crucial for the
convergence analysis of forward-backward schemes: beyond this setting, few (if any) results
are known, especially for stochastic problems.
Motivated by the above, we focus on a class of operators which we call variationally coherent
and which are defined as follows:

Definition 1. We say that A is variationally coherent if

1. The solution set X ∗ of (Z) is nonempty and, for all x ∈ X , y ∈ A(x) and x∗ ∈ X ∗, we
have 〈y, x− x∗〉 ≥ 0.

2. 0 ∈ 〈A(x), x− x∗〉 for all x∗ ∈ X ∗ if and only if x ∈ X ∗.

It is straightforward to show that the class of variationally coherent operators strictly includes
all maximal monotone operators and several proper relaxations thereof – such as pseudomono-
tone (“+” or “∗”) operators, etc. [5, 6].

Owing to its success in solving monotone variational inequalities, we will focus below on a
variant of Nesterov’s dual averaging algorithm [7], suitably adapted for the setting at hand.
The algorithm itself can be described by the recursion:

yn+1 = yn + γnv(xn;ωn+1)

xn+1 = arg maxx∈X {〈yn+1, x〉 − h(yn+1)},
(DA)

where h : X → R is a strongly convex “regularizer function”, γn is a (positive) step-size se-
quence, and ωn is an independent sequence of events drawn from Ω according to P.

Heuristically, the main idea of the method is as follows: At each iteration n = 1, 2, . . . , the
algorithm takes as input a random sample generated by the oracle at the algorithm’s current
state. Subsequently, the method takes a dual step along the input provided by the oracle in
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H∗ ∼= H, the outcome is mirrored back to the problem’s domain X to obtain a new solution
candidate xn+1, and the process repeats. As a standard example, if h(x) = 1/2‖x‖2, the
mirror step is simply a (lazy) projection with respect to the inner product 〈·, ·〉 of H.

In this context, our main result may be stated as follows:

Main Theorem. Assume that (DA) is run with oracle input satisfying (A1) and (A2) and
a step-size sequence γn such that

∑n
k=1 γ

2
k/

∑n
k=1 γk → 0 as n → ∞. If A is variationally

coherent, xn converges to a solution of (Z) with probability 1.

As an immediate corollary of this result, it follows that the so-called “ergodic average”

x̄n =

∑n
k=1 γkxk∑n
k=1 γk

also converges with probability 1. In particular, under a stronger assumption for A, that of
strong variational coherence (i.e. that there exists some L > 0 such that 〈A(x), x − x∗〉 ≥
1
2L‖x− x

∗‖2 for some x∗ and all x in X ), we also show that the parameter choice γn ∝ 1/
√
n

leads to the convergence rate estimate ‖x̄n − x∗‖2 = O(1/
√
n), valid for any initialization of

(DA).
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