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Abstract. We present a matrix-factorization algorithm that scales to input
matrices with both huge number of rows and columns. Learned factors may
be sparse or dense and/or non-negative, which makes our algorithm suit-
able for dictionary learning, sparse component analysis, and non-negative
matrix factorization. Our algorithm streams matrix columns while sub-
sampling them to iteratively learn the matrix factors. At each iteration,
the row dimension of a new sample is reduced by subsampling, resulting
in lower time complexity compared to a simple streaming algorithm. Our
method comes with convergence guarantees to reach a stationary point of
the matrix-factorization problem. We demonstrate its efficiency on mas-
sive functional Magnetic Resonance Imaging data (2 TB), and on patches
extracted from hyperspectral images (103 GB). For both problems, which
involve different penalties on rows and columns, we obtain significant speed-
ups compared to state-of-the-art algorithms.
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1 Context and goals

Matrix factorization is a flexible approach to uncover latent factors in low-rank or sparse
models. With sparse factors, it is used in dictionary learning, and has proven very effective
for denoising and visual feature encoding in signal and computer vision [see e.g., 4]. When
the data admit a low-rank structure, matrix factorization has proven very powerful for various
tasks such as matrix completion [10, 1], word embedding [9, 2|, or network models [13]. Matrix
factorization techniques can be tackled with stochastic optimization: matrix decompositions
are learned by observing a single matrix column (or row) at each iteration. Those techniques
have been successful in handling matrices with a large number of rows but a reasonable
number of columns, e.g., in computer vision [5]. However, stochastic algorithms for matrix
factorization were unable to deal efficiently with matrices that are large in both dimensions.
In two successive works [7, 6], we presented a matrix-factorization algorithm that scales to
input matrices with both huge number of rows and columns. Learned factors may be sparse
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or dense and/or non-negative, which makes our algorithm suitable for dictionary learning,
sparse component analysis, and non-negative matrix factorization. Our algorithm, called
subsampled online matriz factorization (SOMF) is faster than state-of-the-art algorithms by an
order of magnitude on large real-world datasets (hyperspectral images, large fMRI data). It
leverages random sampling with stochastic optimization to learn sparse and dense factors more
efficiently. More precisely, it streams matrix columns while subsampling them to iteratively
learn the matrix factors. At each iteration, the row dimension of a new sample is reduced by
subsampling, resulting in lower time complexity compared to a simple streaming algorithm.

2 Problem setting and algorithm

In our setting, the goal of matrix factorization is to decompose a matrix X € RP*"™ — typi-
cally n signals of dimension p — as a product of two smaller matrices:

X ~ DA with D e RP*!and A € RF*",

with potential sparsity or structure requirements on D and A. In signal processing, sparsity
is often enforced on the code A, in a problem called dictionary learning [8]. In such a case,
the matrix D is called the “dictionary” and A the sparse code. Learning the factorization is
performed by minimizing a quadratic data-fitting term, with constraints and/or penalties over
the code and the dictionary:

n

in (f(D)2 mi L) ) (i) M)
Dec <f(D) = Z§HX —Da|[; + A Q(a )>, (1)
where A 2 [a), ..., a(™], C is a column-wise separable convex set of RP** and  : R? — R

is a penalty over the code. In our work, € is the elastic-net penalty [14] and C enforces that
each columns of D lies in the elastic-net ball: we may thus enforce sparsity on either A or D;
we may optionally add positivity constraints on any of these terms, to perform non-negative
matrix factorization.

Equation (1) can be solved using alternated minimization on D and A, which is guaranteed
to converge toward a critical point of the objective. However this method is not scalable
to problem with large number of samples n or large number of features p, as each iteration
requires to go through all data X. As our use-cases requires to factorize terabyte matrices
with n ~ 10 and p ~ 10°, we design the SOMF algorithm, which

e handles numerous data (large n) by updating D as we stream the columns of matrix X,
following the principles of online matriz factorization [5|;

e handles high dimensional data (large p) by randomly reducing the dimension of the
stream (x;), using subsampling masks (M;);. This introduces noise in parameter updates
but improves single-iteration complexity, resulting in large speed-ups compared to vanilla
online matrix factorization.

With some simplification, at each iteration, our algorithm draws a column x; from X and
a random diagonal masking matrix My, that selects a subspace P;(RP). An approximate
code ay is computed from M;x; and M;D:

1
oy = min =|My(x; — D] a)||2 + \Q(a). (2)
acRk 2
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We use this code a; to update a quadratic surrogate function g; of dictionary D, which is then
minimized over the set C N Py(RP). Defining C; = %Z';Zl asa) and By = %Zizl asx]

s )

1 _ _
D, = argmin -Tr(D'DC,)—Tr (D'B,), (3)
DeC
P} D=P}!D;

before moving to a new samples x;41 and a new mask M, at iteration

3 Convergence analysis and empirical results

Extending the framework of stochastic majorization-minimization [3] to handle approxima-
tions in the majorization and minimization phase of the algorithm, we can show the following
asymptotic convergence guarantee, for a slightly modified version of (2) and under some non-
restrive agsumptions — we refer the reader to the published papers for more details.

Proposition 1 (SOMF convergence). f(Dy) converges with probability one and every limit point
D of (Dy), is a stationary point of f: for all D € C

Vf(Doo, D —Dy) > 0. (4)

We measured the performance of SOMF on the largest available resting-state functional MRI
dataset HCP [11] — brain activation images collected over time, from which to extract rep-
resentative sparse brain components — and on sets of hyperspectral image patches from the
AVIRIS project [12]. We observed speed-ups of an order of magnitude, with subsampling ratio
(average rank of M) that can be increased up to r = 12, as illustrated in Figure 1. Qualita-
tively, We outline the dictionary atoms connex components obtained from fMRI decomposition
in Figure 2 using SOMF and OMF: qualitatively, we obtain well defined dictionaries 10x faster.
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Figure 1: Subsampling provides significant speed-ups on all fMRI and hyperspectral datasets.
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Figure 2: Outlines of each columns of D. The dictionary converges much faster using SOMF.
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