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Abstract. We present a matrix-factorization algorithm that scales to input
matrices with both huge number of rows and columns. Learned factors may
be sparse or dense and/or non-negative, which makes our algorithm suit-
able for dictionary learning, sparse component analysis, and non-negative
matrix factorization. Our algorithm streams matrix columns while sub-
sampling them to iteratively learn the matrix factors. At each iteration,
the row dimension of a new sample is reduced by subsampling, resulting
in lower time complexity compared to a simple streaming algorithm. Our
method comes with convergence guarantees to reach a stationary point of
the matrix-factorization problem. We demonstrate its e�ciency on mas-
sive functional Magnetic Resonance Imaging data (2 TB), and on patches
extracted from hyperspectral images (103 GB). For both problems, which
involve di�erent penalties on rows and columns, we obtain signi�cant speed-
ups compared to state-of-the-art algorithms.
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1 Context and goals

Matrix factorization is a �exible approach to uncover latent factors in low-rank or sparse
models. With sparse factors, it is used in dictionary learning, and has proven very e�ective
for denoising and visual feature encoding in signal and computer vision [see e.g., 4]. When
the data admit a low-rank structure, matrix factorization has proven very powerful for various
tasks such as matrix completion [10, 1], word embedding [9, 2], or network models [13]. Matrix
factorization techniques can be tackled with stochastic optimization: matrix decompositions
are learned by observing a single matrix column (or row) at each iteration. Those techniques
have been successful in handling matrices with a large number of rows but a reasonable
number of columns, e.g., in computer vision [5]. However, stochastic algorithms for matrix
factorization were unable to deal e�ciently with matrices that are large in both dimensions.
In two successive works [7, 6], we presented a matrix-factorization algorithm that scales to
input matrices with both huge number of rows and columns. Learned factors may be sparse
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or dense and/or non-negative, which makes our algorithm suitable for dictionary learning,
sparse component analysis, and non-negative matrix factorization. Our algorithm, called
subsampled online matrix factorization (somf) is faster than state-of-the-art algorithms by an
order of magnitude on large real-world datasets (hyperspectral images, large fMRI data). It
leverages random sampling with stochastic optimization to learn sparse and dense factors more
e�ciently. More precisely, it streams matrix columns while subsampling them to iteratively
learn the matrix factors. At each iteration, the row dimension of a new sample is reduced by
subsampling, resulting in lower time complexity compared to a simple streaming algorithm.

2 Problem setting and algorithm

In our setting, the goal of matrix factorization is to decompose a matrix X ∈ Rp×n � typi-
cally n signals of dimension p � as a product of two smaller matrices:

X ≈ DA with D ∈ Rp×k andA ∈ Rk×n,

with potential sparsity or structure requirements on D and A. In signal processing, sparsity
is often enforced on the code A, in a problem called dictionary learning [8]. In such a case,
the matrix D is called the �dictionary� and A the sparse code. Learning the factorization is
performed by minimizing a quadratic data-�tting term, with constraints and/or penalties over
the code and the dictionary:

min
D∈C
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f̄(D) , min
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)
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where A , [α(1), . . . ,α(n)], C is a column-wise separable convex set of Rp×k and Ω : Rp → R
is a penalty over the code. In our work, Ω is the elastic-net penalty [14] and C enforces that
each columns of D lies in the elastic-net ball: we may thus enforce sparsity on either A or D;
we may optionally add positivity constraints on any of these terms, to perform non-negative
matrix factorization.
Equation (1) can be solved using alternated minimization on D and A, which is guaranteed
to converge toward a critical point of the objective. However this method is not scalable
to problem with large number of samples n or large number of features p, as each iteration
requires to go through all data X. As our use-cases requires to factorize terabyte matrices
with n ∼ 106 and p ∼ 105, we design the somf algorithm, which

• handles numerous data (large n) by updating D as we stream the columns of matrix X,
following the principles of online matrix factorization [5];

• handles high dimensional data (large p) by randomly reducing the dimension of the
stream (xt)t using subsampling masks (Mt)t. This introduces noise in parameter updates
but improves single-iteration complexity, resulting in large speed-ups compared to vanilla
online matrix factorization.

With some simpli�cation, at each iteration, our algorithm draws a column xt from X and
a random diagonal masking matrix Mt, that selects a subspace Pt(Rp). An approximate
code αt is computed from Mtxt and MtD:

αt = min
α∈Rk

1

2
‖Mt(xt −D>t−1α)‖22 + λΩ(α). (2)
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We use this code αt to update a quadratic surrogate function ḡt of dictionary D, which is then
minimized over the set C ∩Pt(Rp). De�ning C̄t = 1

t

∑t
s=1αsα

>
s and B̄t = 1

t

∑t
s=1αsx

>
s ,

Dt = argmin
D∈C

P⊥t D=P⊥t Dt−1

1

2
Tr (D>DC̄t)− Tr (D>B̄t), (3)

before moving to a new samples xt+1 and a new mask Mt+1 at iteration

3 Convergence analysis and empirical results

Extending the framework of stochastic majorization-minimization [3] to handle approxima-
tions in the majorization and minimization phase of the algorithm, we can show the following
asymptotic convergence guarantee, for a slightly modi�ed version of (2) and under some non-
restrive assumptions � we refer the reader to the published papers for more details.

Proposition 1 ( somf convergence). f̄(Dt) converges with probability one and every limit point
D∞ of (Dt)t is a stationary point of f̄ : for all D ∈ C

∇f̄(D∞,D−D∞) ≥ 0. (4)

We measured the performance of somf on the largest available resting-state functional MRI
dataset HCP [11] � brain activation images collected over time, from which to extract rep-
resentative sparse brain components � and on sets of hyperspectral image patches from the
AVIRIS project [12]. We observed speed-ups of an order of magnitude, with subsampling ratio
(average rank of Mt) that can be increased up to r = 12, as illustrated in Figure 1. Qualita-
tively, We outline the dictionary atoms connex components obtained from fMRI decomposition
in Figure 2 using somf and omf: qualitatively, we obtain well de�ned dictionaries 10× faster.
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Figure 1: Subsampling provides signi�cant speed-ups on all fMRI and hyperspectral datasets.
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Figure 2: Outlines of each columns of D. The dictionary converges much faster using somf.
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