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Résumé. In this talk I will discuss su�cient conditions for Lipschitz regu-
larity of the value function for an in�nite horizon optimal control problem
subject to state constraints. I focus on problems with cost functional ad-
mitting a discount rate factor and allow time dependent dynamics and
lagrangian. Furthermore, state constraints may be unbounded and may
have a nonsmooth boundary. Lipschitz regularity is recovered as a conse-
quence of estimates on the distance of a given trajectory of control system
from the set of all its viable (feasible) trajectories, provided the discount
rate is su�ciently large. As the �rst application it is shown that the value
function of the original problem coincides with the value function of the
relaxed in�nite horizon problem. The second application concerns �rst or-
der necessary optimality conditions: a constrained maximum principle and
sensitivity relations involving generalized gradients of the value function.

Mots-clefs : Optimal control, in�nite horizon, state constraints.

Consider the in�nite horizon optimal control problem B∞

minimize

∫ ∞
t0

e−λtl(t, x(t), u(t)) dt (1)

over all trajectory-control pairs (x(·), u(·)) subject to the state constrained control system
x′(t) = f(t, x(t), u(t)) a.e. t ∈ [t0,∞)

x(t0) = x0

u(t) ∈ U(t) a.e. t ∈ [t0,∞)

x(t) ∈ A ∀ t ∈ [t0,∞)

(2)

where λ > 0, f : [0,∞)× Rn × Rm → Rn and l : [0,∞)× Rn × Rm → R are given functions,
U : [0,∞) ⇒ Rm is a Lebesgue measurable set-valued map with closed nonempty images, A is
a closed subset of Rn, and (t0, x0) ∈ [0,∞)×A is the initial datum. Every trajectory-control
pair (x(·), u(·)) that satis�es the state constrained control system (2) is called feasible. The
in�mum of the cost functional in (1) over all feasible trajectory-control pairs, with the initial
datum (t0, x0), is denoted by V (t0, x0) (if no feasible trajectory-control pair exists at (t0, x0) or
if the integral in (1) is not de�ned for every feasible pair, then, by de�nition, V (t0, x0) = +∞).
The function V : [0,∞)×A→ R ∪ {±∞} is called the value function of problem B∞.
In�nite horizon problems have a very natural application in mathematical economics (see,
for instance, the Ramsey model in [5]). In this case the planner seeks to �nd a solution to
B∞ (dealing with a maximization problem instead of a minimization one) with L(t, x, u) =
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e−λtl(ug(x)) and f(t, x, u) = f̃(x)− ug(x), where l(·) is called the �utility� function, f̃(·) the
�production� function, and g(·) the �consumption� function, while the variable x stands for
the �capital� (in some applications one takes as constraint set A = [0,∞) with U(·) ≡ [−1, 1],
but, in general, x(·) is a vector valued function and A is the cone of positive vectors).
It happens quite often, in mathematical economics papers, that one considers as candidates
for optimal solutions only trajectories satisfying simultaneously the unconstrained Pontryagin
maximum principle and the state constraints. Such an approach, however, is incorrect as there
are cases where no optimal trajectory belongs to this class. There is, therefore, the need of a
constrained maximum principle for in�nite horizon problems with su�ciently general struc-
ture. The literature dealing with necessary optimality conditions for unconstrained in�nite
horizon optimal control problems is quite rich (see, e.g., [6] and the reference therein), mostly
under assumptions on f and L that guarantee the Lipschitz regularity of V (·, ·). On the
contrary, recovering optimality conditions in the presence of state constraints appears quite a
challenging issue for in�nite horizon problems, despite all the available results for constrained
Bolza problems with �nite horizon (cfr. [7]).
In the work [1], the normal maximum principle together with partial and full sensitivity
relations and a transversality condition at the initial time are proved, under mild assumption
on dynamics and constraints. To describe our results, assume V (t, ·) is locally Lipschitz and
denote byNA(y) the limiting normal cone to A at y. If (x̄, ū) is optimal for B∞ at (t0, x0), then
it was shown in [1] that there exists a locally absolutely continuous co-state p(·), a nonnegative
Borel measure µ on [t0,∞), and a Borel measurable selection ν(·) ∈ coNA(x̄(·))∩B such that
p(·) satis�es the adjoint equation

−p′(t) ∈ ∂xf(t, x̄(t), ū(t)) (p(t) + η(t))− e−λt∂xl(t, x̄(t), ū(t)) a.e. t ∈ [t0,∞),

the maximality condition

〈 p(t) + η(t), f(t, x̄(t), ū(t))〉 − e−λtl(t, x̄(t), ū(t))

= max
u∈U(t)

{
〈 p(t) + η(t), f(t, x̄(t), u)〉 − e−λtl(t, x̄(t), u)

}
a.e. t ∈ [t0,∞),

and the transversality and sensitivity relations

−p(t0) ∈ ∂xV (t0, x̄(t0)), − (p(t) + η(t)) ∈ ∂xV (t, x̄(t)) a.e. t ∈ (t0,∞), (3)

where η(t0) = 0, η(t) =
∫
[t0,t]

ν(s) dµ(s) for all t ∈ (t0,∞), ∂xV and ∂xl stands for the gener-

alized gradient of V (t, ·) and l(t, ·, ū(t)), and ∂xf for the generalized jacobian of f(t, ·, ū(t)).
Observe that, if x̄(·) ∈ intA, then ν(·) ≡ 0 and the usual maximum principle holds true. But
if x̄(t) ∈ ∂A for some time t, then a measure multiplier factor,

∫
[0,t] ν dµ, may arise modifying

the adjoint equation.
In the literature one �nds some results concerning continuity of the value function for state
constrained in�nite horizon problems, see for instance [3]. However in this last reference the
state constraints are given by a compact set with a smooth boundary. This clearly does not
�t the state constraint described by the cone of positive vectors. In addition, results of [3]
address only the autonomous case, which is also a serious restriction, because, as it was shown
later on, arguments of its proof can not be extended to the non-autonomous case whenever the
time dependence is merely continuous. Because of their presence in various applied models,
addressing non-autonomous control systems subject to unbounded and non smooth state con-
straints remains crucial. Let us note that (the �nite horizon) state-constrained Mayer's and
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Bolza's problems have been successfully investigated by many authors. However in the in�nite
horizon framework these results can not be used, because restricting optimal trajectories of
the in�nite horizon problem to a �nite time interval, in general, does not lead to optimal
trajectories of the corresponding �nite horizon problem (cfr. [4] for a further discussion).
In�nite horizon problems exhibit many phenomena not arising in the �nite horizon context
and for this reason their study is still going on (cfr. [6]). To justify the above necessary
optimality conditions it remains to guarantee the Lipschitz continuity of V (t, ·). This is an
easy step for �nite horizon problems. However in our case the distance between two trajectories
corresponding to the same control and to distinct initial conditions growing exponentially, it
may go to in�nity.
When the discount factor is present and in the absence of state constraints, the Lipschitz
continuity has been recovered by many authors whenever λ is su�ciently large (in order to
control the growth of l along trajectory-control pairs), see for instance [4] and its bibliography.
But in the presence of state constraints the question becomes much more complex and a
uniform inward pointing condition has to be imposed on the boundary of A in addition to
having large discount factor. In [2] we proposed su�cient conditions for Lipschitz regularity
of V (t, ·) allowing both f and l to be time dependent and not requiring neither boundedness
of A nor smoothness of ∂A. Furthermore, the very same assumptions allow us to show that
the value function of the original problem B∞ coincides with the value function of the relaxed
in�nite horizon problem. This last question is very important for the existence of relaxed
optimal controls.
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