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A Fast Algorithm for Sparse Reduced-Rank Regression
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Abstract. In this work, we consider a descent algorithm for the Sparse
Reduced-Rank Regression problem. A recent litterature revisited such non-
convex problems based on an explicit parametrization of the low-rank ma-
trix. However, no general convergence rate result was provided, in particu-
lar not in the nondifferentiable case. Reformulating the minimization prob-
lem and analyzing its geometry in a neighborhood of the optimal set, we
show the Polyak-Łojasiewicz inequality or its extension to the nondifferen-
tiable case are satisfied. Consequently, we establish the linear convergence
of the proximal block-coordinate gradient algorithm in this neighborhood.
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Formulations that require to learn a low-rank matrix or its factors appear in many problems in
machine learning, from variants of Principal Components Analysis and Canonical Correlation
Analysis, to matrix completion problems and multi-task learning formulations. Reduced-Rank
Regression (RRR) is one particular instance of these : it corresponds to the multiple output
linear regression in which all the parameter vectors associated to the different dimensions are
constrained to lie in a low-dimensional space. It is formulated as

min
W∈Rp,k: rank(W )≤r

||Y −XW ||2F (RRR)

where Y ∈ Rn,k and X ∈ Rn,p. As described by Velu and Reinsel (2013), (RRR) is one of
the few low-rank matrix problems whose solution has an analytical form. Assuming XTX is
invertible, let W ∗ = (XTX)−1XTY denote the full-rank least squares estimator, PSQT the
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singular value decomposition of (XTX)−1/2XTY andQr the first r columns ofQ. The solution
to (RRR) is then W ∗r = W ∗QrQ

T
r . However this solution is computationally expensive.

A variant of interest called Sparse Reduced-Rank Regression (SRRR) is the problem in which
a sparsity-inducing penalty ||W ||1,2 =

∑
i(
∑

jW
2
i,j)

1/2 is added as a regularizer1. Doing so, one
loses the analytical form for the solution. Yet, Bunea et al. (2011, 2012); Chen et al. (2012);
Chen and Huang (2012); Ma and Sun (2014); Mukherjee et al. (2015) studied the statistical
properties of this estimator and gave numerical algorithms to compute it. In spite of their
relative simplicity, these algorithms are costly in the high-dimensional setting.
In the last decade, many optimization problem of the form minW : rank(W )≤r Fw(W ) with Fw
convex have been tackled via the convex relaxation version obtained by replacing the rank
constraint with a contraint or a regularization on the trace-norm ||W ||∗; these formulations
however lead to expensive algorithms and the relaxation induces a bias, typically. A recent
literature revisited a number of these problems based on an explicit parameterization of the
low-rank matrix, which yields biconvex problems of the form

min
U∈Rp,r, V ∈Rk,r

Fw(UV T ). (1)

In particular, it is possible to reformulate (RRR) in that form.
Among others, iterative first-order algorithms that are classical for the jointly convex setting
may be applied to the nonconvex problem (1). A number of recent papers have established
stronger theoretical guarantees for these algorithms in the smooth nonconvex case. In partic-
ular Park et al. (2016) and Wang et al. (2016) establish convergence rate guarantees, provided
an appropriate initialization is used and penalties such as 1

4 ||U
TU − V TV ||2F are added to the

objective as regularizers. Several papers considered the geometry of such problems (Li et al.,
2016; Li and Tang, 2016) but do not provide general convergence rate results, in particular
not in the non-differentiable case.
In this work, we reformulate the minimization problem (1) in the SRRR setup and apply tools
specifically designed for the study of nonconvex problems to analyze the rate of convergence of
classical descent methods. Indeed, we propose to apply either a forward-backward algorithm
with line-search or possibly block coordinate descent. Despite the lack of strong convexity,
there’s still hope for an asymptotical linear convergence rate as long as a Polyak-Łojasiewicz-
like condition (Polyak, 1963; Karimi et al., 2016) is satisfied in a neighborhood of the optima.
We focus on the objective Fw(UV T ) = 1

2 ||Y −XUV
T ||2F + λ||UV T ||1,2. First, following Chen

and Huang (2016), we impose V TV = Ir. Secondly, expanding the Frobenius norm and using
the orthogonal invariance of both || . ||2F and || . ||1,2, we obtain :

min
U,V, V TV=Ir

1

2
||XU ||2F − 〈Y,XUV T 〉+ λ||U ||1,2 (2)

Recognizing a Procrustres problem (Higham and Papadimitriou, 1995) maxV, V TV=Ir〈Y,XUV
T 〉 =

||Y TXU ||∗ where || . ||∗ is the trace-norm, we can reformulate the problem as :

min
U
f(U) + λ||U ||1,2 where f(U) =

1

2
||XU ||2F − ||Y TXU ||∗. (SRRR)

The objective is invariant to the transformation U ← UR where R belongs to the Stiefel man-
ifold Or =

{
R ∈ Rr,r, RTR = Ir

}
. Besides, note that the trace-norm of Y TXU which is of

1The results we show could be extended for any penalty ψ that satisfies ψ(MR) = ψ(M) for all M , R such
that RTR = I.
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dimension (k, r) is much cheaper to compute than for the matrixW of dimension (p, k) for the
convex relaxation. To keep the discussion simple, we assume from now on that XTX is invert-
ible. In order to apply a proximal gradient algorithm, we get rid of the non-differentiablity due
to the trace-norm by applying Nesterov smoothing ||Y TXU ||∗ ← infU ′ ||Y TXU ′||∗+ ε

2 ||U
′−U ||F 2

for a small ε > 0. Assuming the spectrum of Y TXU is bounded below by a positive constant
in a neighborhood of the optima, this transformation results only in the addition of a con-
stant term around the set of optima. This assumption seems reasonable as it is true for λ = 0
whenever r ≤ rank(XTY ) and we can show the set of optima varies continuously as a function
of λ (Bonnans and Shapiro, 1998, Thm. 6.4).
Slightly modifying the results Baldi and Hornik (1989) obtained for the biconvex formulation of
RRR we identify the set of optima Ω∗0 for (SRRR) when λ = 0. Let’s define Ĩ = (1i=j)i,j ∈ R`,r.
The set Ω∗0 is the image by a linear transformation from Rr,r to Rp,r of Or :

Ω∗0 =
{

(XTX)−
1
2PSĨR,R ∈ Or

}
(3)

where PSQT is the singular value decomposition of (XTX)−1/2XTY . While f is not convex,
computing its Hessian, we obtain :

Theorem 1. There exists L > µ > 0 and a sublevel set V of the function f that can be
partitioned into disjoint convex elements VR such that V = ∪R∈OrVR, f is L-smooth on V and
the restriction of f on each VR is µ-strongly convex.

One can show the set of optima is continuously modified (Bonnans and Shapiro, 1998, Thm.
6.4) as a function of λ. Consequently, there exists λ̄ such that for λ < λ̄, the optima stay in
V and the previous results holds for (SRRR) as well. Let’s fix such a λ. A direct corollary of
Theorem 1 is as follows:

Corollary 2. Let f∗ and F ∗ denote respectively the global minima of f and F . For all U ∈ V,
f satisfies the Polyak-Łojasiewicz inequality:

1

2
||∇f(U)||2F ≥ µ(f(U)− f∗). (4)

Moreover, there is µλ and a neighborhood Vλ of the optima for problem (SRRR) such that for
all U ∈ Vλ, f satisfies the following so-called proximal Polyak-Łojasiewicz inequality:

−Lmin
U ′

[〈∇f(U), U ′ − U〉+
L

2
||U ′ − U ||2 + λ||U ′||1,2 − λ||U ||1,2] ≥ µλ(F (U)− F ∗) (5)

We propose a direct proof of Corollary 2 based on Theorem 1; it should be noted that the
geometric structure leveraged in Theorem 1 can also be used to obtain the first part (4) of
Corollary 2 as a consequence of Theorem 3.2 in Li and Pong (2017).
The proximal generalization of the Polyak-Łojasiewicz inequality proven in this corollary was
considered in Karimi et al. (2016) and Csiba and Richtárik (2017) to establish linear conver-
gence of proximal gradient and proximal block-coordinate gradient algorithms.
In particular, using the framework of Csiba and Richtárik (2017), that we slightly extend to
allow for line-searches, we obtain a bound at each iteration on the optimal gap between the
values of F . In particular, given a line search parameter β such that 0 < β < 1, and given a
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set of rows to update Sk ⊂ [[1, r]], the chosen algorithm finds at iteration k a step-size tk > β
L

and Uk+1 such that

Uk+1 = argmin
U ′,∀i/∈Sk,U ′

i,:=Ui,:

f(U) + 〈∇f(U), U ′ − U〉+
1

2t
||U ′ − U ||2 + λ||U ′||1,2. (6)

In V, the convergence is linear and we have precisely the following theorem:

Theorem 3. At iteration k, if Uk ∈ V and a set of rows Sk is selected, then Uk+1 ∈ V and

F (Uk+1)− F ∗ ≤ [1− ρk](F (Uk)− F ∗), (7)

where ρk = |Sk|
p min(12 , β

µ
L).

Led in the same conditions as in Bunea et al. (2012), numerical experiments confirmed that in
the case λ = 0, the proposed algorithm can be faster than their alternated exact minimization
procedure and that iterative methods presented in Park et al. (2016). As expected, we observed
similar convergence rates in the SRRR setting.
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