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Résumé. Under suitable assumptions, the epigraph of the bilateral mini-
mal function is proved to be ϕ-convex for a nonlinear control system. This
generalized, to the nonlinear case, the main result of [4] where a similar
result is proved for a linear control system.
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We consider a control system governed by a differential inclusion. Let F be a multifunction
mappings points x in Rn to subsets Rn. Associated with F the differential inclusion:

ẋ(t) ∈ F (x(t)) a.e. t ∈ [0, T ], x(0) = x0. (1)

A solution to (1) is an absolutely continuous function x(·) defined on the interval [0, T ] with
initial value x(0) = x0, in which case we say that x(·) is a trajectory of F originating from x0.
The bilateral minimal time function T : Rn×Rn −→ [0,+∞] associated to (1) can be defined
as follows: For (α, β) ∈ Rn × Rn, T (α, β) is the minimum time taken by a trajectory to go
from α to β. When no such trajectory exists, T (α, β) is taken to be +∞. The effective domain
of T (·, ·) is denoted by R, that is,

R := {(α, β) ∈ Rn × Rn : T (α, β) < +∞}.

The function T (·, ·) was introduced in Clarke and Nour [1], see also [3], where the Hamilton-
Jacobi equation of the time-optimal control problem was studied in a domain which contains
the target set. These authors used T (·, ·) in order to construct proximal solutions to this
equation, and to the study the existence of time-semigeodesic trajectories. The regularity of
T (·, ·) was studied by Nour in [2], where necessary and sufficient conditions were provided for
T (·, ·) to be continuous and to be locally Lipschitz in R. More precisely, it was proven that
R is open and T (·, ·) is continuous in R if and only if T (·, ·) is continuous at (α, α) for all
α ∈ Rn, which is in turn equivalent to F and −F to be small-time locally controllable at α
for all α ∈ Rn. Since the small-time controllability of F and −F at α, for all α ∈ Rn, is a
quite strong hypothesis, in [2, Proposition 4.2] a sufficient condition for local continuity was
provided as well. In particular, for (α, β) ∈ R, if F and −F are small-time locally controllable
at α or at β then T (·, ·) is continuous at (α, β). For the Lipschitz continuity, Nour proved in
[2] that for (α, β) ∈ R, if 0 ∈ intF (α) or 0 ∈ intF (β) then T (·, ·) is Lipschitz near (α, β).
As a consequence, Nour deduced in [2, Proposition 4.6] that R is open and T (·, ·) is locally
Lipschitz in R if and only if 0 ∈ intF (α) for all α ∈ Rn. Another useful result in [2] is the
following theorem, concerning local semiconvexity of the bilateral minimal time function. By
the linearity of F , we mean that F (x) := Ax+ U for all x ∈ Rn, where A is an n× n matrix
and U is a convex and compact subset of Rn.



Journées SMAI MODE 2018

Theorem 1 ([2, Corollary 4.8]) Assume F is linear and that 0 ∈ intF (α) or 0 ∈ intF (β),
where (α, β) ∈ R with α 6= β. Then T (·, ·) is semiconvex near (α, β) (that is, on an open set
containing (α, β)).

We recall that a function f : U −→ Rn is said to be semiconvex on U ⊂ Rn if for any
convex C ⊂⊂ U there exists KC > 0 such that the function x 7→ f(x) + KC‖x‖2 is convex
on C, where ‖ · ‖ denotes the euclidean norm. The semiconvexity property can be seen as
an intermediate property between Lipschitz continuity and continuous differentiability. More
precisely, semiconvex functions are essentially a quadratic perturbation of convex functions
and therefore inherit several regularity properties from convexity such as local Lipschitzianity
and a.e. twice differentiability in the interior of their domain. Moreover, their epigraphs
satisfy an external sphere condition with locally uniform radius; this property, for general
sets, is often referred to positive reach, proximal smoothness and ϕ-convexity. Such functions
are semiconvex if and only if they are locally Lipschitz and then are good candidate to extend
Theorem 1 under a weaker condition. This was done in [4] as the following.

Theorem 2 ([4, Theorem 1.2]) Assume F is linear and that F and −F are small-time
locally controllable near α or β, where (α, β) ∈ R with α 6= β. Then the epigraph of T (·, ·) is
ϕ0-convex near (α, β).

The goal of this work is to generalize the preceding theorem to a nonlinear control system.
More precisely, under the following three assumptions on F , we will prove that the epigraph
of the function T (·, ·) is locally ϕ-convex:

• Standing hypotheses (F (x) is nonempty, convex and compact, F is upper semnicontin-
uous and the linear growth condition is satisfied).

• Assumptions on the maximized Hamiltonian H associated with F .

• A ϕ0-convexity assumption on the reachable set.
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