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Résumé. We consider the problem of �nding exact sums of squares (SOS)
decompositions for certain classes of non-negative multivariate polynomials,
while relying on semide�nite programming (SDP) solvers.
We start by providing a hybrid symbolic-numeric algorithm computing ex-
act rational SOS decompositions for polynomials lying in the interior of the
SOS cone. This algorithm computes an approximate SOS decomposition
for a perturbation of the input polynomial with an arbitrary-precision SDP
solver. An exact SOS decomposition is obtained thanks to the perturba-
tion terms. We prove that bit complexity estimates on output size and
runtime are both polynomial in the degree of the input polynomial and
simply exponential in the number of variables. This analysis is based on
quanti�er elimination as well as bounds on the cost of the ellipsoid method
and Cholesky's decomposition.
Next, we apply this algorithm to compute exact Polya and Putinar's repre-
sentations respectively for positive de�nite forms and polynomials positive
over basic compact semialgebraic sets. We also compare the implemen-
tation of our algorithms with existing methods based on CAD or critical
points.

Mots-clefs : optimization algorithms, positive polynomials, Polya's Positivstellensätz, Puti-
nar's Positivstellensätz, sums of squares decomposition, semide�nite programming, real alge-
braic geometry.

Let Q (resp. R) be the �eld of rational (resp. real) numbers. We consider the problem of
deciding the non-negativity of f ∈ Q[x] either over Rn or over a semi-algebraic set K de�ned
by some constraints g1(x) ≥ 0, . . . , gm(x) ≥ 0 (with gj ∈ Q[x]). Further, d will denote the
maximum of the total degrees of these polynomials.
As many other algorithmic problems in e�ective real algebraic geometry, this one is known
to be NP hard [13]. The famous Cylindrical Algebraic Decomposition algorithm [7] allows to
solve such problems in time doubly exponential in n (and polynomial in d). This complexity
result has been improved later on, through the so-called critical point method, starting from [8]
and a series of works [16, 9] which culminates with [5] to establish that this decision problem
can be solved in time ((s + 1)d)O(n) (see also [6, Chap. 13]). These latter ones have been
extensively developed and optimized to obtain implementations which re�ect the complexity
gain (see e.g. [2, 1, 4, 3]). However, all in all, these techniques are singly exponential in n.
Besides, these algorithms are �root �nding� algorithms: to decide the positivity of f over the
considered domain, one asks these algorithms to �nd a point therein at which f is negative.
When f is positive, such algorithms will return an empty list without a certi�cate that can be
checked a posteriori.
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To bypass the curse of exponential algorithms while computing certi�cates of non-negativity
for the problems considered here, an approach based on sums of squares (SOS) decompositions
(and their variants) has been popularized by Lasserre [12] and Parillo [14]. We refer to [13] and
references therein for detailed surveys on this approach. In a nutshell, the idea is as follows.
A polynomial f is non-negative over Rn if it can be written as an SOS s21 + · · · + s2r with
si ∈ R[x] for 1 ≤ i ≤ r. Also f is non-negative over the semi-algebraic set K if it can be
written as s21 + · · · + s2r +

∑m
j=1 σjgj where σi is a sum of squares in R[x] for 1 ≤ j ≤ m. It

turns out that, thanks to the �Gram matrix method�, following e.g. [12, 14], computing such
decompositions can be reduced to solving Linear Matrix Inequalities (LMI), which boils down
to considering a semide�nite programming (SDP) problem.
For instance, on input f ∈ Q[x] of even degree d = 2k, the decomposition f = s21 + · · ·+ s2r is
a by-product of a decomposition of the form f(x) = vk(x)

TLTDLvk(x) where vk is the vector
of all monomials of degree ≤ k in Q[x], L is a lower triangular matrix with non-negative
entries on the diagonal and D is a diagonal matrix with non-negative entries. The matrices L
and D are obtained after computing a symmetric matrix G (the Gram matrix), semide�nite
positive (all its eigenvalues are non-negative), such that f = vTk Gvk. Such a matrix G is found
using solvers for LMIs. Even if such inequalities can be solved symbolically (see [10]), the
degrees of the extensions are prohibitive on large examples. Besides, there exist fast numerical
solvers for solving LMIs, e.g. SeDuMi [17], SDPA [18]. But using uniquely numerical solvers
yields �approximate� non-negativity certi�cates. On our example, the matrices L and D (and
consequently the polynomials s1, . . . , sr) are not known exactly.
This raises topical questions. The �rst one is how to let interact symbolic computation with
these numerical solvers to get exact certi�cates? What to do when SOS certi�cates do not
exist? Also, given inputs with rational coe�cients, can we obtain certi�cates with rational
coe�cients?
For these questions, we inherit from previous contributions from Parillo and Peyrl [15] and
next Kaltofen, Li, Yang and Zhi [11].
This work provides a new algorithmic framework to handle (un)-constrained polynomial opti-
mization problems with exact rational SOS decompositions. The �rst contribution is a hybrid
symbolic-numeric algorithm, called intsos, providing rational SOS decompositions for poly-
nomials belonging to the interior of the SOS cone. The main idea is to perturbate the input
polynomial then to obtain an approximate Gram matrix of the perturbation by solving an
SDP problem and eventually to recover an exact decomposition with the perturbation terms.
Then, we rely on Algorithm intsos to compute SOS of rational functions for positive de�nite
forms, based on Polya's representations, yielding a second algorithm, called Polyasos.
Finally, we rely on Algorithm intsos to compute weighted SOS decompositions for polynomi-
als positive on basic compact semialgebraic sets, yielding a third algorithm, called Putinarsos.
When the input is an n-variate polynomial of degree d with integer coe�cients of maximum
bitsize τ , we prove that Algorithm intsos runs in boolean time τ2dO (n) and outputs SOS
polynomials of bitsize bounded by τdO (n). This also yields bit complexity analysis for Algo-
rithm Polyasos and Algorithm Putinarsos. To the best of our knowledge, this is the �rst
complexity estimates for the output of algorithms providing exact multivariate SOS decom-
positions.
The three algorithms are implemented within a Maple library, called multivsos. We provide
benchmarks evaluating the performance against existing methods based on CAD or critical
points.
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